

# EXPERIMENT

## EXPERIMENT

9

**Object :** To determine the moment of inertia of an irregular body about an axis through its centre of gravity with a torsional pendulum (Inertia Table).

**Apparatus used :** Inertia table, irregular body, a regular body whose M.I. can be calculated by measuring its mass and dimensions (e.g. a right circular cylinder), spirit level, stopwatch, vernier callipers, physical balance and weight box.

**Formula used :** The moment of inertia of the given irregular body is given as

$$I_1 = I_2 \times \frac{T_1^2 - T_0^2}{T_2^2 - T_0^2}$$

where  $I_2$  = moment of inertia of the regular body, if regular body is a right circular cylinder of mass  $M$  and radius  $R$  then  $I_2 = \frac{1}{2}MR^2$

$T_0$  = time period of inertia table alone

$T_1$  = time period of inertia table with irregular body

$T_2$  = time period of inertia table with regular body (cylinder)

### Description of Inertia Table

As shown in Fig. the inertia table consists of a circular aluminium disc  $D$  suspended by means of a thin wire to the middle point of a cross bar "XY". The cross bar stands on vertical rods standing on a heavy base, which can be made horizontal with the help of screws  $S_1$ ,  $S_2$  and  $S_3$  using a spirit level. The disc  $D$  can be made horizontal by means of three balancing weights  $m_1$ ,  $m_2$  and  $m_3$  placed in the concentric groove cut on its upper surface.

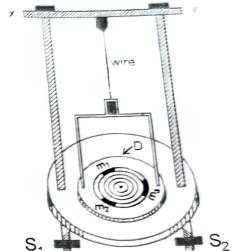



Fig.

### Procedure

- Make the base of inertia table horizontal by the leveling screws and test the levelling with spirit-level.
- Level the table (disc D) with the help of balancing weights in concentric groove and spirit-level.
- Give a slight twist to the table so that it begins to execute torsional vibrations in the horizontal plane alone. Time taken for 20, 25 and 30 oscillations is noted and then time period  $T_0$  is determined.
- Place the irregular body in the centre of table, test the level and repeat the above process to find out time period  $T_1$ .
- Remove the irregular body and place the regular body on the table and now find out the value of  $T_2$  similarly.
- Weigh the regular body and find its diameter with a vernier callipers.

### प्रयोग विधि

- सर्वप्रथम Inertia table के आधार को उसके नीचे लगे हुए पेंचों तथा स्प्रिट-लेविल की सहायता से क्षैतिज रूप से समतल करते हैं।
- अब उपकरण की दोलन करने वाली डिस्क  $D$  को इस पर बने संकेन्द्री खाँचों में संतुलनकारी भा (बेलनाकार छड़ा) रखकर समतल करते हैं।
- अब इस डिस्क  $D$  (Table) को माध्य स्थिति से थोड़ा घुमाते हैं जिससे निलंबन तार में ऐंठन उत्पन्न होती है, डिस्क को छोड़कर इसे क्षैतिज तल में मरोड़ी दोलन करने देते हैं तथा क्रमशः 20, 25,

दोलन का समय नोट करते हैं और एक दोलन देते आवर्त काल  $T_0$  निकालते हैं।

(iv) डिस्क D (Table) के मध्य में दी गई अनियमित वस्तु जिसका जड़त्व आधूर्ण निकालना है, को रखकर उपर्युक्त प्रक्रिया दोहराकर दोलन का आवर्त काल  $T_1$  ज्ञात करते हैं।

(v) अब अनियमित वस्तु को हटाकर टेबिल के केन्द्र पर एक नियमित वस्तु रखकर, पहले की भौतिक दोलन का आवर्त काल  $T_2$  ज्ञात करते हैं।

(vi) नियमित (regular) वस्तु का द्रव्यमान तथा उसकी त्रिज्या ज्ञात करते हैं।

### Observations

1. Mass of the regular body (right circular cylinder)  $M = \dots$  kg.
2. Table for diameter of the circular cylinder.

| S.No.        | Reading (—) along any direction (—) |       |              | Reading along a perpendicular direction (1) |       |       | Diameter uncorrected (X + Y)/2 | Mean uncorrected diameter cm. | Mean corrected diameter cm. | Mean Radius $r = D/2$ cm. |
|--------------|-------------------------------------|-------|--------------|---------------------------------------------|-------|-------|--------------------------------|-------------------------------|-----------------------------|---------------------------|
|              | M.S.                                | V.S.  | Total        | M.S.                                        | V.S.  | Total |                                |                               |                             |                           |
| Rea-<br>ding | Rea-<br>ding                        | X cm. | Rea-<br>ding | Rea-<br>ding                                | X cm. |       |                                |                               |                             |                           |
| 1.           |                                     |       |              |                                             |       |       | —                              | —                             | —                           | —                         |
| 2.           |                                     |       |              |                                             |       |       | —                              | —                             | —                           | —                         |
| 3.           |                                     |       |              |                                             |       |       | —                              | —                             | —                           | —                         |

Table for the determination of time periods  $T_0$ ,  $T_1$  and  $T_2$ .

| S.No. | Inertia table alone |                        | Inertia table + irregular body |                        | Inertia table + regular body |                        |
|-------|---------------------|------------------------|--------------------------------|------------------------|------------------------------|------------------------|
|       | Time taken sec.     | Time period $T_0$ sec. | Time taken sec.                | Time period $T_1$ sec. | Time taken sec.              | Time period $T_2$ sec. |
| 1.    |                     |                        |                                |                        |                              |                        |
| 2.    |                     |                        |                                |                        |                              |                        |
| 3.    |                     |                        |                                |                        |                              |                        |

$$\text{Mean } T_0 = \dots \text{ sec}$$

$$\text{Mean } T_1 = \dots \text{ sec}$$

$$\text{Mean } T_2 = \dots \text{ sec}$$

### Calculations

$$\text{The M.I. of regular body (Cylinder)} I_2 = \frac{1}{2} MR^2 = \dots \text{kg} \times \text{m}^2$$

The M.I. of irregular body

$$I_1 = I_2 \times \frac{T_1^2 - T_0^2}{T_2^2 - T_0^2} = \frac{1}{2} MR^2 \times \frac{T_1^2 - T_0^2}{T_2^2 - T_0^2}$$

### EXPERIMENT

Result : Moment of inertia of irregular body = ... kg  $\times$  m<sup>2</sup>

### Precautions

- The table should execute torsional vibrations only and there should be no up and down or to and fro motion of the table.
- The suspension wire should not be twisted beyond elastic limit and for this the amplitude of vibrations should be small.
- There should be no kinks in the suspension wire.

### QUESTIONS

Q.1 जड़त्व आधूर्ण (moment of inertia) किसे कहते हैं?

Ans. पिण्ड के किसी कण का घूर्णन अक्ष के परितः जड़त्व आधूर्ण उस कण के द्रव्यमान तथा उसकी घूर्णन अक्ष से दूरी के बर्दाके गुणनफल के बराबर होता है।

Q.2 जड़त्व क्या है?

Ans. न्यूटन के प्रथम नियम के अनुसार यदि कोई पिण्ड विरामावस्था में ही रहता है और यदि वह एक समान चाल से सीधी रेखा में गतिमान है तो वह उसी प्रकार गतिमान रहता है, जब तक कि उस पर कोई वाह्य बल लगाकर वर्तमान अवस्था में परिवर्तन न किया जाये। दूसरे शब्दों में पिण्ड का वह गुण जिसके कारण वह अपनी अवस्था परिवर्तन का विरोध करता है जड़त्व कहलाता है।

Q.3 किसी पिण्ड का जड़त्व आधूर्ण किन-किन कारकों पर निर्भर करता है?

Ans. वह निम्न कारकों पर निर्भर करता है।

1. पिण्ड के द्रव्यमान पर।

2. घूर्णन अक्ष से गुरुत्व केन्द्र की दूरी पर।

3. घूर्णन अक्ष के सापेक्ष पिण्ड में द्रव्यमान के वितरण पर।

Q.4 किसी पिण्ड के जड़त्व तथा जड़त्व आधूर्ण में क्या अन्तर है?

Ans. जड़त्व पिण्ड के मात्र द्रव्यमान पर निर्भर करता है जबकि पिण्ड का किसी अक्ष के परितः जड़त्व-आधूर्ण मात्र उसके द्रव्यमान पर ही ही निर्भर नहीं करता बल्कि घूर्णन अक्ष के सापेक्ष द्रव्यमान के वितरण पर भी निर्भर करता है।

Q.5 जड़त्व आधूर्ण का भौतिक महत्व क्या है?

Ans. न्यूटन के गति विषयक द्वितीय नियम ( $F = ma$ ) के अनुसार यदि किसी पिण्ड में एकांक त्वरण ( $a = 1$ ) दर्शन करें तो उसमें आवश्यक बल पिण्ड के द्रव्यमान द्वारा प्रदर्शित किया जाता है ( $F = m$ )। ठीक इसी प्रकार घूर्णन